Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 9(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36551013

RESUMEN

Extrusion-based three-dimensional (3D) bioprinting is an emerging technology that allows for rapid bio-fabrication of scaffolds with live cells. Alginate is a soft biomaterial that has been studied extensively as a bio-ink to support cell growth in 3D constructs. However, native alginate is a bio-inert material that requires modifications to allow for cell adhesion and cell growth. Cells grown in modified alginates with the RGD (arginine-glycine-aspartate) motif, a naturally existing tripeptide sequence that is crucial to cell adhesion and proliferation, demonstrate enhanced cell adhesion, spreading, and differentiation. Recently, the bioprinting technique using freeform reversible embedding of suspended hydrogels (FRESH) has revolutionized 3D bioprinting, enabling the use of soft bio-inks that would otherwise collapse in air. However, the printability of RGD-modified alginates using the FRESH technique has not been evaluated. The associated physical properties and bioactivity of 3D bio-printed alginates after RGD modification remains unclear. In this study, we characterized the physical properties, printability, and cellular proliferation of native and RGD-modified alginate after extrusion-based 3D bioprinting in FRESH. We demonstrated tunable physical properties of native and RGD-modified alginates after FRESH 3D bioprinting. Sodium alginate with RGD modification, especially at a high concentration, was associated with greatly improved cell viability and integrin clustering, which further enhanced cell proliferation.

2.
Sci Rep ; 12(1): 10028, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705660

RESUMEN

Peripheral artery disease and the associated ischemic wounds are substantial causes of global morbidity and mortality, affecting over 200 million people worldwide. Although advancements have been made in preventive, pharmacologic, and surgical strategies to treat this disease, ischemic wounds, a consequence of end-stage peripheral artery disease, remain a significant clinical and economic challenge. Synechococcus elongatus is a cyanobacterium that grows photoautotrophically and converts carbon dioxide and water into oxygen. We present a novel topical biologic gel containing S. elongatus that provides oxygen via photosynthesis to augment wound healing by rescuing ischemic tissues caused by peripheral artery disease. By using light rather than blood as a source of energy, our novel topical therapy significantly accelerated wound healing in two rodent ischemic wound models. This novel topical gel can be directly translated to clinical practice by using a localized, portable light source without interfering with patients' daily activities, demonstrating potential to generate a paradigm shift in treating ischemic wounds from peripheral artery disease. Its novelty, low production cost, and ease of clinical translatability can potentially impact the clinical care for millions of patients suffering from peripheral arterial disease.


Asunto(s)
Productos Biológicos , Enfermedad Arterial Periférica , Geles , Humanos , Isquemia , Oxígeno , Enfermedad Arterial Periférica/terapia , Fotosíntesis , Cicatrización de Heridas
3.
J Mech Behav Biomed Mater ; 126: 105074, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35030471

RESUMEN

After myocardial infarction (MI), adult mammals exhibit scar formation, adverse left ventricular (LV) remodeling, LV stiffening, and impaired contractility, ultimately resulting in heart failure. Neonatal mammals, however, are capable of natural heart regeneration after MI. We hypothesized that neonatal cardiac regeneration conserves native biaxial LV mechanics after MI. Wistar rat neonates (1 day old, n = 46) and adults (8-10 weeks old, n = 20) underwent sham surgery or permanent left anterior descending coronary artery ligation. At 6 weeks after neonatal MI, Masson's trichrome staining revealed negligible fibrosis. Echocardiography for the neonatal MI (n = 15) and sham rats (n = 14) revealed no differences in LV wall thickness or chamber diameter, and both groups had normal ejection fraction (72.7% vs 77.5%, respectively, p = 0.1946). Biaxial tensile testing revealed similar stress-strain curves along both the circumferential and longitudinal axes across a full range of physiologic stresses and strains. The circumferential modulus (267.9 kPa vs 274.2 kPa, p = 0.7847), longitudinal modulus (269.3 kPa vs 277.1 kPa, p = 0.7435), and maximum shear stress (3.30 kPa vs 3.95 kPa, p = 0.5418) did not differ significantly between the neonatal MI and sham groups, respectively. In contrast, transmural scars were observed at 4 weeks after adult MI. Adult MI hearts (n = 7) exhibited profound LV wall thinning (p < 0.0001), chamber dilation (p = 0.0246), and LV dysfunction (ejection fraction 45.4% vs 79.7%, p < 0.0001) compared to adult sham hearts (n = 7). Adult MI hearts were significantly stiffer than adult sham hearts in both the circumferential (321.5 kPa vs 180.0 kPa, p = 0.0111) and longitudinal axes (315.4 kPa vs 172.3 kPa, p = 0.0173), and also exhibited greater maximum shear stress (14.87 kPa vs 3.23 kPa, p = 0.0162). Our study is the first to show that native biaxial LV mechanics are conserved after neonatal heart regeneration following MI, thus adding biomechanical support for the therapeutic potential of cardiac regeneration in the treatment of ischemic heart disease.


Asunto(s)
Infarto del Miocardio , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Cicatriz/patología , Modelos Animales de Enfermedad , Infarto del Miocardio/patología , Miocardio/patología , Ratas , Ratas Wistar , Remodelación Ventricular
4.
J Thorac Cardiovasc Surg ; 164(6): e389-e405, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34649718

RESUMEN

OBJECTIVES: Neonatal rodents and piglets naturally regenerate the injured heart after myocardial infarction. We hypothesized that neonatal rabbits also exhibit natural heart regeneration after myocardial infarction. METHODS: New Zealand white rabbit kits underwent sham surgery or left coronary ligation on postnatal day 1 (n = 94), postnatal day 4 (n = 11), or postnatal day 7 (n = 52). Hearts were explanted 1 day postsurgery to confirm ischemic injury, at 1 week postsurgery to assess cardiomyocyte proliferation, and at 3 weeks postsurgery to assess left ventricular ejection fraction and scar size. Data are presented as mean ± standard deviation. RESULTS: Size of ischemic injury as a percentage of left ventricular area was similar after myocardial infarction on postnatal day 1 versus on postnatal day 7 (42.3% ± 5.4% vs 42.3% ± 4.7%, P = .9984). Echocardiography confirmed severely reduced ejection fraction at 1 day after postnatal day 1 myocardial infarction (33.7% ± 5.3% vs 65.2% ± 5.5% for postnatal day 1 sham, P = .0001), but no difference at 3 weeks after postnatal day 1 myocardial infarction (56.0% ± 4.0% vs 58.0% ± 3.3% for postnatal day 1 sham, P = .2198). Ejection fraction failed to recover after postnatal day 4 myocardial infarction (49.2% ± 1.8% vs 58.5% ± 5.8% for postnatal day 4 sham, P = .0109) and postnatal day 7 myocardial infarction (39.0% ± 7.8% vs 60.2% ± 5.0% for postnatal day 7 sham, P &lt; .0001). At 3 weeks after infarction, fibrotic scar represented 5.3% ± 1.9%, 14.3% ± 4.9%, and 25.4% ± 13.3% of the left ventricle area in the postnatal day 1, postnatal day 4, and postnatal day 7 groups, respectively. An increased proportion of peri-infarct cardiomyocytes expressed Ki67 (15.9% ± 1.8% vs 10.2% ± 0.8%, P = .0039) and aurora B kinase (4.0% ± 0.9% vs 1.5% ± 0.6%, P = .0088) after postnatal day 1 myocardial infarction compared with sham, but no increase was observed after postnatal day 7 myocardial infarction. CONCLUSIONS: A neonatal leporine myocardial infarction model reveals that newborn rabbits are capable of age-dependent natural heart regeneration.


Asunto(s)
Infarto del Miocardio , Función Ventricular Izquierda , Animales , Conejos , Cicatriz , Corazón/diagnóstico por imagen , Infarto del Miocardio/diagnóstico por imagen , Miocitos Cardíacos , Regeneración , Volumen Sistólico , Porcinos
5.
Tissue Eng Part A ; 27(5-6): 328-335, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32703108

RESUMEN

Cell sheet technology using UpCell™ (Thermo Fisher Scientific, Roskilde, Denmark) plates is a modern tool that enables the rapid creation of single-layered cells without using extracellular matrix (ECM) enzymatic digestion. Although this technique has the advantage of maintaining a sheet of cells without needing artificial scaffolds, these cell sheets remain extremely fragile. Collagen, the most abundant ECM component, is an attractive candidate for modulating tissue mechanical properties given its tunable property. In this study, we demonstrated rapid mechanical property augmentation of human dermal fibroblast cell sheets after incubation with bovine type I collagen for 24 h on UpCell plates. We showed that treatment with collagen resulted in increased collagen I incorporation within the cell sheet without affecting cell morphology, cell type, or cell sheet quality. Atomic force microscopy measurements for controls, and cell sheets that received 50 and 100 µg/mL collagen I treatments revealed an average Young's modulus of their respective intercellular regions: 6.6 ± 1.0, 14.4 ± 6.6, and 19.8 ± 3.8 kPa during the loading condition, and 10.3 ± 4.7, 11.7 ± 2.2, and 18.1 ± 3.4 kPa during the unloading condition. This methodology of rapid mechanical property augmentation of a cell sheet has a potential impact on cell sheet technology by improving the ease of construct manipulation, enabling new translational tissue engineering applications.


Asunto(s)
Colágeno , Ingeniería de Tejidos , Animales , Bovinos , Módulo de Elasticidad , Matriz Extracelular , Fibroblastos , Humanos
6.
Cells ; 9(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963369

RESUMEN

Newborn mice and piglets exhibit natural heart regeneration after myocardial infarction (MI). Discovering other mammals with this ability would provide evidence that neonatal cardiac regeneration after MI may be a conserved phenotype, which if activated in adults could open new options for treating ischemic cardiomyopathy in humans. Here, we hypothesized that newborn rats undergo natural heart regeneration after MI. Using a neonatal rat MI model, we performed left anterior descending coronary artery ligation or sham surgery in one-day-old rats under hypothermic circulatory arrest (n = 74). Operative survival was 97.3%. At 1 day post-surgery, rats in the MI group exhibited significantly reduced ejection fraction (EF) compared to shams (87.1% vs. 53.0%, p < 0.0001). At 3 weeks post-surgery, rats in the sham and MI groups demonstrated no difference in EF (71.1% vs. 69.2%, respectively, p = 0.2511), left ventricular wall thickness (p = 0.9458), or chamber diameter (p = 0.7801). Masson's trichome and picrosirius red staining revealed minimal collagen scar after MI. Increased numbers of cardiomyocytes positive for 5-ethynyl-2'-deoxyuridine (p = 0.0072), Ki-67 (p = 0.0340), and aurora B kinase (p = 0.0430) were observed within the peri-infarct region after MI, indicating ischemia-induced cardiomyocyte proliferation. Overall, we present a neonatal rat MI model and demonstrate that newborn rats are capable of endogenous neocardiomyogenesis after MI.


Asunto(s)
Infarto del Miocardio/fisiopatología , Regeneración , Animales , Animales Recién Nacidos , Aurora Quinasa B/metabolismo , Proliferación Celular , Cicatriz/patología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Fibrosis , Antígeno Ki-67/metabolismo , Ligadura , Masculino , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Infarto del Miocardio/cirugía , Miocitos Cardíacos/patología , Ratas Wistar , Factores de Tiempo , Troponina/metabolismo
7.
Free Radic Biol Med ; 135: 198-209, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30862544

RESUMEN

Glutathione oxido-reductase (GR) is a primary antioxidant enzyme of most living forms which protects the cells from oxidative metabolism by reducing glutathione (GSH) from its oxidized form (GSSG). Although the antioxidant role of the enzyme is well characterized, the specific role of conserved N' peptide sequence in antioxidant mechanism remains unclear. In this study, we have identified an RNA sequence encoding GR enzyme from spirulina, Arthrospira platensis (Ap) and the changes in its gene expression profile was analysed during H2O2 stress. Results showed that H2O2 (10 mM) stimulated the expression of ApGR throughout the timeline of study (0, 5, 10, 15 and 20 days) with highest expression at 5th day post-exposure which confirmed the antioxidant role of ApGR in spirulina during H2O2 induced oxidative stress. A dithiol containing short antioxidant peptide, 39GGTCVIRGCVPKKLM53 (GM15) from ApGR was predicted and its radicals (superoxide and hydroxyl radical) scavenging potential was confirmed by in vitro cell-free assays. GM15 (12.5 µM) reduced the intracellular generalized oxidative stress level, as measured using DCFDA assay in H2O2 exposed leucocytes without affecting any of the cellular population. Further, the biomedical application of the radical scavenging property of GM15 was validated in oral carcinoma (KB) cells where GM15 exhibited significant cytotoxicity. Also, GM15 exhibited heterogenous effects on intracellular oxidative stress level in KB cells: at lower concentration (6.25 µM), the peptide reduced oxidative stress whereas, at higher concentration (25 µM) it increased the intensity of oxidative stress. GM15 (25 µM) induced caspase-9 mediated apoptosis in KB cells along with membrane disruption and DNA degradation which are confirmed by propidium iodide (PI) internalization and comet assays, respectively. Overall, the study shows that GM15 peptide i) scavenges superoxide, hydroxyl radicals, and influences intracellular oxidative stress, and ii) has anti-cancer effect in oral cancer cells.


Asunto(s)
Antioxidantes/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Péptidos/farmacología , Spirulina/enzimología , Antioxidantes/química , Apoptosis/efectos de los fármacos , Caspasa 9/genética , Catalasa/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión Reductasa/química , Glutatión Reductasa/genética , Humanos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Oxidación-Reducción , Péptidos/química , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...